The Hilbert-Huang Transform for Detection of Otoacoustic Emissions and Time-Frequency Mapping

نویسندگان

  • Arturas Janusauskas
  • Vaidotas Marozas
  • Arunas Lukosevicius
  • Leif Sörnmo
چکیده

This paper presents an application of the Hilbert–Huang transform (HHT) and ensemble correlation for detection of the transient evoked otoacoustic emissions (TEOAEs), and high resolution time–frequency mapping. The HHT provides a powerful tool for nonlinear analysis of nonstationary signals such as TEOAEs. Since the HHT itself does not distinguish between signal and noise it was used with ensemble correlation to extract information about intervals with correlated activity. The combination of methods produced good results for both tasks TEOAE detection and time–frequency mapping. The resulting detection performance, using the mean hearing threshold as audiological separation criterion, was a specificity of 81% at a sensitivity of 90% to be compared to 65% with the traditional wave reproducibility detection criterion. High resolution time frequency mapping predicted in more than 70% of the cases hearing loss at a specific frequency in cases of ski-sloping audiograms. The present m ethod does not require a priori information on the signal and may, with minor changes, be successfully applied to analysis of other types of repetitive signals such as evoked potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Hearing Loss in Audiological Frequencies from Transient Evoked Otoacoustic Emissions

Transient evoked otoacoustic emissions (TEOAEs) have been analyzed for objective assessment of hearing function and monitoring of the influence of noise exposure and ototoxic drugs. This paper presents a novel application of the Hilbert–Huang transform (HHT) for detection and time-frequency mapping of TEOAEs. Since the HHT does not distinguish between signal and noise, it is combined with ensem...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...

متن کامل

Cochlear Hearing Loss Detection System Based on Transient Evoked Otoacoustic Emissions

The aim of this paper is to evaluate the application of the discrete wavelet transform (DWT) and support vector machines (SVM) to transient evoked otoacoustic emissions (TEOAE) in order to achieve a detection of frequency-specific hearing loss (HL). We introduce a system to determine detection rates between groups of persons with normal hearing, high frequency hearing loss, and pantonal hearing...

متن کامل

Application of the Hilbert - Huang Transform to the Search for Gravitational PJaves

We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform, to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on the data, and thus the time-frequency decomposition it provides is not limited by time-frequency uncertainty spreading. Because of its high time-frequency resolution it has important applications t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2006